M-MLV Retrotranscriptase

For first-strand cDNA synthesis and two step RT-PCR

M-MLV Retrotranscriptase

Cat. no. EC07

Kit Contents

Contents	EC0701 10000 U	EC0702 20000 U	EC0703 40000U
M-MLV (200 U/μl)	50 μΙ	100 μΙ	200 μΙ
5× First-Strand Buffer	250 μΙ	500 μl	1000 μΙ
Handbook	1	1	1

Storage

M-MLV can be stored at -20°C for up to 12 months.

Introduction

M-MLV is an RNA-dependent DNA polymerase and consists of a single subunit with a molecular weight of 71kDa. It can be used in cDNA synthesis with RNA or RNA: DNA hybrids as templates. M-MLV is the preferred reverse transcriptase for long mRNA templates (>5kb), since its RNase H activity is weaker than commonly used reverse transcriptase. It greatly reduces the degradation of RNA templates and therefore increases the productivity.

Application

Synthesis of first-strand cDNA, One-Step RT-PCR, 3' and 5' RACE PCR, prime extension, cDNA library construction, etc.

Unit Definition

One unit is defined as the amount of enzyme that incorporates 1 nmol of dNTPs into acid-insoluble material within 10 min at 37°C with polyA \cdot poly (dT)₁₂₋₁₈ as the template-primer.

Protocol

Synthesis of first-strand cDNA

20 μ l reaction system can be used for reverse transcription of 1-5 μ g total RNA or 50-500 ng mRNA.

- Add the following components to a nuclease-free microcentrifuge tube.
 - 2 μl oligo (dT)₁₂₋₁₈ (10 μM), or 2 μl random primers (10 μM), or 2 pmol gene-specific primers;
 - 1-5 μg total RNA, or 50-500 ng mRNA;
 - 2 μl dNTP mixture (10 mM total, with neutral PH value);
 - Add RNase-free ddH₂O up to 15 μl.
- 2. Heat at 70 °C for 5 min, and place the tube immediately on ice for 2 min. Centrifuge briefly and then add 4 μ l 5× First-Strand Buffer (with DTT).

Optional Step: If the amount of starting template is less than 50 ng, 0.5-1 μ l RNasin (40 U/ μ l) should be added.

- 3. Add 1 μ l M-MLV and mix gently by pipetting; when using random primers, incubate the tube at 25°C for 10 min.
- 4. Incubate at 42 °C for 50 min.
- 5. Heat the sample to 95°C for 5 min to inactivate enzyme. Cool

the sample on ice for downstream experiments or store at -20°C immediately.

If the RNase H is needed, perform the step 6. Or, proceed to step 7 directly.

- Add 1 μl RNase H (2 U), incubate at 37°C for 20 min to degrade RNA. Then heat the sample to 95°C for 5 min to inactivate RNase H.
- 7. Dilute the reaction system to 50 μ l in RNase-free ddH₂O. Take 2-5 μ l for PCR amplification.

PCR Amplification

Take 10% of the first-strand cDNA synthesis reaction mixture (2 μ l) for PCR; increasing amount of cDNA synthesis products not lead to highly efficient DNA amplification and inhibitors presenting in the reverse-transcription products may inhibit the PCR.

1. Prepare reaction mixture by adding the following components to a microcentrifuge tube.

Reagents	Volume
10x PCR Buffer (200 mM Tris-HCL (PH 8.4), 500 mM KCl)	5 μΙ
50 mM MgCl ₂	1.5 μΙ
dNTP (2.5 mM each)	1 μΙ
Primer 1 (10 μM)	1 μΙ
Primer 2 (10 μM)	1 μΙ
Taq DNA Polymerase (5 U/μl)	0.4 μΙ
cDNA (synthesis reaction mixture)	2 μΙ
ddH₂O	Up to 50 μl

Note: To obtain the optimal result, the concentration of MgCl₂ should be optimized for individual template-primer combination.

- 2. Mix gently and overlay the reaction with one or two drops (\sim 50 μ I) of nuclease-free mineral oil to prevent evaporation and condensation. (Mineral oil is not necessary if the thermo cycler has been equipped with hot lid.)
- 3. Denature at 94°C for 2 min.
- Set 15-40 PCR cycles. The conditions of annealing and denaturation should be optimized for individual primer and template.

